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Abstract
New types of exact explicit solitary wave solutions of the higher order KdV
equations are identified by applying a direct method designed specifically for
constructing solitary wave solutions of evolution equations. The first type is
the ‘generalized Kaup–Kupershmidt’ (GKK) solitary waves, which unify the
structures of the sech2 KdV-like soliton and the Kaup–Kupershmidt soliton
and also provide solutions of some other equations. One of those equations is
found to possess the multi-soliton solutions which makes it a good candidate
for being integrable in terms of the GKK solitons. Another type of solutions of
the higher order KdV equations identified by applying the method represents
the steady-state localized structures. The variety of equations possessing such
solutions includes the integrable (in terms of the sech2 solitons) Sawada–Kotera
equation which thus appears to provide the localized solutions of two types.

PACS numbers: 05.45.Yv, 05.45.−a, 02.30.Jr, 52.35.Sb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Korteweg–de Vries (KdV) equation arises in many physical contexts as an equation
governing weakly nonlinear long waves when nonlinearity and dispersion are in balance
at leading order. If higher order nonlinear and dispersive effects are of interest, then the
asymptotic expansion can be extended to the next order in the wave amplitude which leads
to the higher order KdV equations. To date, a plethora of results exists concerning behavior
of the solitary wave solutions of the higher order KdV equations, most frequently obtained
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through the use of perturbation (asymptotic) methods. The results obtained this way rely on
the existence of the exact solutions in the form of the KdV type solitons

u(x, t) = a sech2k(x − V t). (1)

Correspondingly asymptotic procedures start either from the KdV equation

ut + 6uux + u3x = 0 (2)

or from the integrable fifth-order equation, which represents a combination of the KdV equation
and its first commuting flow, as follows:

ut + 6uux + u3x + α(u5x + 10uu3x + 20uxu2x + 30u2ux) = 0. (3)

where subscripts of the form ‘nx’ denote the derivatives of the order n with respect to x.
Solutions of equation (3) are the KdV solitons with the same amplitude a = 2k2 and the
updated wave velocity V = 4k2 + α16k4.

The sech2 solitary wave solutions seem to be ubiquitous for the KdV-like equations,
and frequently the problem of the existence of the solitary wave solutions is identified with
the possibility of having the sech2 solutions (see e.g. [1]). Indeed, almost all the KdV-like
integrable equations possess such solutions. Among the fifth-order KdV equations there are,
in addition to (3), two pure fifth-order equations (not including the KdV flow but including
terms having the same structure as the ‘perturbation’ terms in the perturbed KdV equations)
which are known to be integrable in terms of the sech2 solitons. The first equation is one
that belongs to the completely integrable hierarchy of higher order KdV equations (sometimes
called the Lax equation [2]):

ut + u5x + 10uu3x + 20uxu2x + 30u2ux = 0 (4)

and the second is the Sawada–Kotera (SK) equation [3] (sometimes called the Caudrey–Dodd–
Gibbon equation [4])

ut + u5x + βuu3x + βuxu2x +
β2

5
u2ux = 0. (5)

Note that in the last equation β may be scaled to any value (see section 2.1). The KdV–
SK equation which represents a combination of the KdV equation and the SK differential
polynomial specified to β = 15 as

ut + 6uux + u3x + α(u5x + 15uu3x + 15uxu2x + 45u2ux) = 0 (6)

is not known to be integrable but has two-soliton and three-soliton solutions of the sech2 form
[5].

The only exception in this sense is the integrable Kaup–Kupershmidt (KK)
equation [6, 7]

ut + u5x + βuu3x +
5

2
βuxu2x +

β2

5
u2ux = 0. (7)

Solitary wave solutions of the KK equation are frequently called ‘anomalous’ soliton solutions
[1, 8, 9] to emphasize the difference from the common ‘regular’ sech2 solitons. These
‘anomalous’ solitary wave solutions have the form

u(x, t) = 60

β
k2 2 cosh 2kξ + 1

(cosh 2kξ + 2)2
, ξ = x − 16k4t. (8)

As distinct from the case of the sech2 solitons, no other fifth-order equations admitting solutions
of form (8) have been found. The KK equation has been widely discussed in the literature,
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mostly in connection with the SK equation (e.g. [8, 10]) and in efforts to explain the perplexing
form of the KK solitons (e.g. [9]).

One of the main results of the present paper is identifying a new type of the exact solitary
wave solutions of the higher order KdV equations which includes the sech2 solitons and the
Kaup–Kupershmidt solitons as particular cases. In what follows, solutions of this type are
named the ‘generalized Kaup–Kupershmidt’ (GKK) solitary waves. Among the higher order
KdV equations possessing such solutions there is one which provides the GKK solitary waves
with a continuous spectrum of the wave velocity. The equation is

ut + 6uux + u3x + α
(
u5x + 15uu3x + 75

2 uxu2x + 45u2ux

) = 0, (9)

and its solutions have the form

u(x, t) = 4k2
Q

√
1+20αk2

1+5αk2 cosh 2kξ + 1(
cosh 2kξ + Q

√
1+20αk2

1+5αk2

)2
, ξ = x − V t, V = 4k2 + 16αk4, (10)

where Q = ±1 (with Q = −1 allowed only in the case of α < 0, see section 3.2).
Equation (9) and its solutions (10) possess several remarkable features. First, as distinct

from the case of (3), not only the wave velocity update, as compared with the KdV solitons
(α = 0), occurs for α �= 0 but also the form of the solution changes essentially. Second,
solutions of (9) may be solitary waves of different shapes dependent on the relations between
parameters (see more details in section 3.2). Third, solutions (10) include the sech2 solitons
and the KK solitons as the long-wave and the short-wave limits respectively. The KK equation
and its solutions loose their isolated and ‘anomalous’ nature this way. Next, equation (9)
possesses multi-soliton solutions that are derived precisely in the same way as those for the
pure KK equation which makes it plausible that equation (9) is integrable in terms of the GKK
solitons. Thus, there appears one more starting-point for the asymptotic analysis of the higher
order KdV equations.

The GKK solitary waves have been identified by applying a direct method designed
specifically for finding solitary wave solutions of the evolution equations. In the present
paper, the method is applied to the scalar fifth-order equation

ut + 2q̂uux + μ̂u3x + α̂u5x + β̂uu3x + δ̂uxu2x + 3r̂u2ux = 0, (11)

This equation represents a natural extension of the KdV equation to the next order in that
the ‘perturbation’ part includes all possible terms maintaining the balance ∂2

x ∼ u, and being
O(u) with respect to the KdV terms. In addition to (10), some other new exact solutions of the
equations of type (11) have been found using the method. In particular, new types of solitary
wave solutions of the SK equation and the KdV–SK equation have been identified.

Before proceeding, the following remarks are necessary. There exists a one-to-one
mapping between the KdV–KK equation (9) and the KK equation (7) specified to β = 15 so
that the transformation

u(x, t) = − 1

15α
+ U(X, T ), X = x +

1

5α
t, T = αt (12)

relates solutions u(x, t) of equation (9) and solutions U(X, T) of the equation

UT + U5X + 15UU3X + 75
2 UXU2X + 45U 2UX = 0. (13)
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Thus, it is possible to address the result represented by equation (10) as a new type of solutions
of the KK equation (13):

U(X, T ) = 1

15α
+ 4k2

Q

√
1+20αk2

1+5αk2 cosh 2kξ + 1(
cosh 2kξ + Q

√
1+20αk2

1+5αk2

)2 ,

ξ = X − Ṽ T , Ṽ = 1 + 20k2α + 80k4α2

5α2
,

(14)

where α is an arbitrary parameter. Solution (14) may be considered to be more general than
(8), in a sense, and including the latter as a limit for α → ∞.

Due to the fact that solution (14) contains a constant part 1/(15α), the function U(X, T)
does not vanish at infinity but tends to this constant value. Although solitary wave solutions
which do not satisfy conditions of vanishing at infinity appear in the literature (e.g. [11, 12]),
such a behavior does not seem to be physically meaningful in the context of physical processes
described by the original equations. Therefore, it is difficult to attribute physical meaning to
such solutions—especially if the constant part depends on the wave number as it does in the
solutions of [11] and [12]. Bearing in mind the preceding remarks, we now may be more
precise in defining the solitary wave solutions considered in the paper as those possessing the
property to vanish at infinity. From this perspective, solution (14) of the KK equation describes
a solitary wave only in the limit of α → ∞ when it becomes the KK solitary wave and so
the KK equation (13) does not provide the GKK solitary wave solutions (10). From another
perspective, if one has solution (14) defined, then one can search for equations providing
physically significant solutions without the constant part (‘truly’ solitary waves), and such a
search will result in defining transformation (13) and the KdV–KK equation (9).

The paper is organized as follows. In the next section, the method is described; rescaling
possibilities for equation (11) are discussed before applying the method. Solutions obtainable
using the method are presented and discussed in section 3. In section 4, some remarks on the
results and further perspectives of developing the method are furnished.

2. Method

2.1. Scalings

The number of parameters in equation (11) can be reduced using the scaling freedoms. The
cases of q̂ �= 0 and μ̂ �= 0, when the KdV flow is included, and of q̂ = μ̂ = 0 should be
treated separately (the cases when only one of the parameters q̂ and μ̂ vanishes and the case of
α̂ = 0 are not considered). In the case of q̂ �= 0 and μ̂ �= 0, the scales for u and t are defined
such that the KdV equations were in its standard form (2). The freedom in the choice of the
scale for x is used to fix the coefficient of u5x to either 1 or −1 dependent on the sign of the
ratio μ̂/α̂. Thus, in the case of q̂ �= 0 and μ̂ �= 0, the equation under consideration is

ut + 6uux + u3x + αu5x + βuu3x + δuxu2x + 3ru2ux = 0, (15)

which, as a matter of fact, represents a four-parameter family of equations with α = ±1 and
arbitrary β, δ and r. (Of course, if it were intended to implement the asymptotic analysis of
solutions of (11), the scaling should be such that the small parameter appeared explicitly in
the equation.) In the case of q̂ = μ̂ = 0, the coefficient of the highest derivative is made
equal to one by a proper choice of scale for t and, although the two scales for u and x remain
free, only one more freedom exists since these two scales enter in the combination u∗(x∗)2.
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It is convenient to leave this scale unspecified to facilitate adherence to the forms of some
equations used in the literature. Thus, in the case of q̂ = μ̂ = 0 the equation studied is

ut + u5x + βuu3x + δuxu2x + 3ru2ux = 0, (16)

and the equivalent equation might be

ut + u5x + (Sβ)uu3x + (Sδ)uxu2x + 3(S2r)u2ux = 0, (17)

where S = u∗(x∗)2 is an arbitrary scale. Thus, (16) represents a two-parameter (not a
three-parameter) family of equations. Correspondingly, equations (5) and (7) represent single
equations (not one-parameter families) since β can be scaled to any value.

2.2. Outline of the method

The specific feature of the direct method applied in this paper is that the ‘potential’ p = ∫
u dx

is used as an independent variable. In the simplest case, when u is sought to be a function of
one variable p, the solution ‘Ansatz’ has the form

u(x, t) = f (p(x, t)), p(x, t) =
∫

u(x, t) dx (18)

px = f (p). (19)

Note that the choice of limits of integration in the definition of p in (18) is of no importance
as it does not influence the solution for u = px . The method with the solution form (18) is
a proper tool if the calculations are aimed at defining the solitary wave solutions. To have
solutions in the form of the solitary wave solutions in the original variables, the function f (p)

in the ‘Ansatz’ (18) should have (at least) two real roots. For example, the sech2 solitary wave
solution (1) in these variables takes the form

u = a − k2p2

a
, (20)

and the ‘anomalous’ solitary wave solution (8) of the KK equation becomes

u = − 2
3 (3p2 + k2) + 4

3k
√

3p2 + k2. (21)

The potential p in (20) and (21) is defined such that the roots of f (p) were symmetric: u = 0
for p = ±m/2.

The forms f (p) in (20) and (21) suggest using one which unifies and somewhat generalizes
those two as follows

f (p) = AR2 + BR + C, R =
√

p2 + K, (22)

where A, B, C and K are constants. To apply the method one has first to make transformation
of variables (x, t) → (p(x, t), t) → (R(x, t), t) in the equation under consideration. Then
upon substituting form (22) into the transformed equation, one gets a polynomial in R and
determines the constants A, B, C and K from conditions of vanishing the monomial coefficients.
Having the constants defined, the first-order partial differential equation (19) for p(x, t) can be
solved. If u is assumed to be a function of one variable p, as it is in (18), solving equation (19)
reduces to one integration while the constant of integration is assigned to be a function of t.
This function is to be determined by substitution of the solution p(x, t) of equation (19) into the
integrated form of the equation under consideration, and then the function u(x, t) = px(x, t) is
calculated. Below the solutions obtained by applying the method are presented and discussed.
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3. Solutions

3.1. Equations providing the sech2 solitary wave solutions

First of all note that specifying Ansatz (22) to K = 0 or B = 0 leads to the form corresponding
to the sech2 solitary waves and so applying the method with this specific Ansatz yields such
solutions. The fifth-order equations admiting the sech2 solitary wave solutions were studied
in [1] and our method produces results coinciding with those obtained in [1]. It is found that
there are equations admiting the sech2 solutions for a range of wave speeds and equations
admiting such solutions for a unique or precisely two possible wave speeds. For the purpose
of comparison of the ranges of equation parameters corresponding to the new solutions found
in the present paper and those corresponding to the sech2 solutions, some results of [1] (in
somewhat different form) are presented below.

Equations of type (15) admiting the sech2 solitary wave solutions with continuous
spectrum of k are members of two one–parameter families corresponding to α = 1 and
α = −1 which are defined by the relations

δ = 30α − β, r = β (23)

with the solution parameters a = 2k2 and V = 4k2 + α16k4. The integrable equations (3) are
included into (23) as a particular case.

Equations of type (16) admiting the sech2 solitary wave solutions with continuous
spectrum of k form a two-parameter family defined by

r = β(β + δ)

30
(24)

with a = 60k2/(β + δ) and V = 16k4, which includes the integrable equations (4) and (5).
However, this is in fact a one-parameter family since the scaling freedom related to the scale
S in (17) remains unused. This scale may be specified such that the amplitude a of the wave
(1) were equal to 2k2 as it is for the KdV solitons and for the family (23). This requirement
defines the scale as S = 30/(β +δ) and introducing this scale into (17) with r defined as in (24)
yields relations between rescaled coefficients coinciding with those of (23) for α = 1. Note
that such a rescaling based on the requirement that a be equal to 2k2 specifies the value of β

in the SK equation (5) to β = 15. Among the KdV–SK equations representing a combination
of the KdV equation and the SK differential polynomials with different β, only equation (6)
specified to this ‘distinguished’ value β = 15 admits the sech2 solitary wave solutions.

3.2. Generalized Kaup–Kupershmidt solitary waves

Applying the method with Ansatz (22) for K �= 0 and B �= 0 to equations (15) and (16) yields
(if solutions not vanishing at infinity and solutions with singularities are excluded) two types
of solutions, one of which is considered here and another one in the next subsection. The first
type is the generalized KK (GKK) solitary waves:

u(x, t) = U
M cosh 2kξ + 1

(cosh 2kξ + M)2
, ξ = x − V t, (25)

where M > −1. The remarkable feature of this form is that it unifies the KK-solitons (8) and
the sech2-solitons (1); the former corresponds to M = 2 and the latter to either M = 1 (with
the wave number k) or M = 0 (with the wave number 2k). Among equations of type (16),
only the KK equation (7) admits solutions of form (25) with M �= 1, 0, the KK solitons (8).
For equations of type (15) including the KdV flow, the following three cases are identified.
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The first case is equation (9) which is a combination of the KdV equation with the KK
differential polynomial specified to the value β = 15; it, as a matter of fact, represents two
equations with α = 1 and α = −1. Solutions of (9) have form (10).

The second case is one of the KdV–SK equations (6) corresponding to α = −1:

ut + 6uux + u3x − (u5x + 15uu3x + 15uxu2x + 45u2ux) = 0. (26)

It admits the GKK solitary wave solutions (25) with a continuous spectrum of the parameter
M but with unique values of the wave number k = 1/(2

√
5) and the wave velocity V = 4/25:

u(x, t) = 2

5

M cosh 1√
5
ξ + 1(

cosh 1√
5
ξ + M

)2 , ξ = x − 4

25
t. (27)

It is worth remarking that equation (26) provides also the sech2 solitary waves and thus
possesses two types of solitary wave solutions with a continuous spectrum of one of the
solution parameters.

The third case is a three-parameter family of equations defined by

r = (4β − δ)(β + 2δ)

135α
, (28)

which admits solutions of the form (25) for specific values of k and other solution parameters:

U = 18(β + 2δ − 90α)

5β2 + 8βδ − 4δ2
, M2 = 2(β − 15α)(β + 2δ)

3β2 + 30αδ + 5βδ − 2δ2 − 120αβ

k2 = β + 2δ − 90α

20α(5β − 2δ)
, V = 4k2 + 16αk4.

(29)

In the relations (29), the cases of β = δ = 15 and δ = 5β/2 must be excluded in order to not
have singularities; the case of δ = 45α − β/2 should also be excluded as it corresponds to
M = 1. Then the regions in the equation parameter space corresponding to solutions defined
by (25) and (29) do not overlap with (23) corresponding to the sech2 solitary wave solutions.
A particular case of solutions (29) can be obtained from the solution identified in [12] if, in
that solution, the wave number is specified to vanish a physically inconsistent constant part of
the solution.

Solitary wave solutions of the form (25) are well defined for any M > −1 and may have
different shapes dependent on the value of M. For 0 � M � 2, their shape is qualitatively
similar to that of the common solitons. In this range of M, including M = 0 (the sech2 solitons
with the wave number 2k), M = 1 (the sech2 solitons with the wave number k) and M = 2 (the
KK solitons), the function u(ξ) has one extremum (maximum) at ξ = 0. For −1 < M < 0,
in addition to the maximum at ξ = 0, there appear two minima symmetric to ξ = 0. For
2 < M < ∞, the maximum at ξ = 0 changes to a minimum and there appear two additional
maxima symmetric to ξ = 0—double-hump soliton. Variation of shape of the generalized
KK solitary waves with M is shown in figure 1 (values of U and k are chosen as in the solution
(27) of equation (26)). The letters (a), (b) and (c) denoting the characteristic shapes for the
intervals −1 < M < 0, 0 � M � 2 and 2 < M < ∞ respectively are used for identifying
the corresponding shapes and intervals in the following discussion.

For solutions (10) of equations (9), the value of M, and so the shape of the wave, depends
on the parameters α, k and Q. In the case of the equation with α = 1, only Q = 1 is allowed to
avoid singularities and values of M are within the interval (b) for any k. Therefore, all solutions
of equation (9) with α = 1 are solitary waves of a common shape with one maximum which,
in the limits of small k and large k, adhere respectively to the sech2 and KK solitons.

In the case of equation with α = −1, the situation is more complicated. First, there exists
a gap in the spectrum of k in which the solution does not exist. If Q = 1, the solution is well
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(a)

(b)
(c)

20 10 10 20
x

0.1
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Figure 1. Possible shapes of the GKK solitary waves as defined by (25) plotted for U = 2/5,
k = 1/(2

√
5), t = 0 and different M: dashed for M = −0.25, solid for M = 0.5; 3; 30 with

thickness increasing with M. The letters (a), (b) and (c) are used to denote the characteristic shapes
for the intervals −1 < M < 0, 0 � M � 2 and 2 < M < ∞ when respectively the function u(ξ)

has one maximum and two minima (a), one maximum (b), and one minimum and two maxima (c).

defined for 0 < k < 1/(2
√

5) and k > 1/
√

5, and if Q = −1, it is well defined only for
0 < k < 1/(2

√
5). Thus, equation (9) with α = −1, within the interval 0 < k < 1/(2

√
5),

possesses solutions of types (a) (Q = −1) and (b) (Q = 1) and, in the range 1/
√

5 < k < ∞
for Q = 1, possesses solutions of type (c), double-hump solitons. The wave velocity V defined
as in (10) may change its sign so that the solution describes the right-running wave for k < 0.5
and the left-running wave for k > 0.5.

The GKK solitary waves of the form (25) have also been found in [13] as solutions of
the sixth-order (and second order in time) equation which is named by the authors as the
bidirectional Kaup–Kupershmidt (bKK) equation. Note that, in [13]; the bKK equation is
written as a fifth-order equation with a nonlocal term. The multi-soliton solutions of the bKK
equation have been studied in [14]. As distinct from the GKK solitary waves described in the
present paper with continuous spectrum of the parameter M, for solutions of [13] only two
values of the parameter M of (25) are allowed and attributed to the right- and left-running
waves which have the shapes (b) regular solitons and (c) double-hump solitons respectively.
Thus, the double-hump solitons appear among both solutions found in the present paper and
those of [13], but solutions of type (a) identified in the present paper for the KdV-KK and
KdV-SK equations do not arise as solutions of the bKK equation of [13]. For both the KdV–
KK equation (9) and the bKK equation of [13] solutions describing both right-running and
left-running waves are possible. It is worth emphasizing here that the solitary waves (10)
arise as solutions of the unidirectional equation. Thus, the bidirectional formulation is not
obligatorily required to have the GKK solitary waves which can propagate in both directions.
The relation between the direction of propagation of the wave and its shape for solutions of the
KdV–KK equation (9) is not as simple as for the solitary waves of the bKK equation of [13].
While, similar to [13], the GKK left-running waves may be only of the shape (c), double-hump
solitons, as distinct from [13], the right-running waves of all three shapes are possible. In
particular, there exist the double-hump waves propagating in both directions: right-running
for (1/

√
5 < k < 0.5) and left-running for k > 0.5.

8
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A remarkable property of equation (9) is that multi-soliton solutions can be derived using
Hirota’s method modified due to Hereman and Nuseir [15]. The existence of multi-soliton
solutions of equation (9), which are derived precisely in the same way as for the pure KK
equation, makes it plausible that equation (9) is integrable in terms of the GKK solitons.

The two-soliton solution of equation (9) may be represented in the form

u = ∂2 ln F

∂x2
;

F = 1 + q11e
Z1 + q12e

Z2 + q21e
2Z1 + q22e

2Z2 + q23e
Z1+Z2

+ q31e
2Z1+Z2 + q32e

Z1+2Z2 + q4e
2Z1+2Z2;

Z1 = 2k1
(
x − (

4k2
1 + 16αk4

1

)
t − φ1

)
, Z2 = 2k2

(
x − (

4k2
2 + 16αk4

2

)
t − φ2

);
q11 = 2M1, q12 = 2M2, q21 = 1, q22 = 1, q23 = 4M1M2a

b
,

q31 = 2M2c

b
, q32 = 2M1c

b
, q4 = c2

b2
;

M1 = Q1

√
1 + 20αk2

1

1 + 5αk2
1

, M2 = Q2

√
1 + 20αk2

2

1 + 5αk2
2

; Q1 = ±1, Q2 = ±1;

a = 3
(
k2

1 + k2
2

)
+ 10α

(
2k4

1 − k2
1k

2
2 + 2k4

2

)
, b = (k1 + k2)

2(3 + 20α
(
k2

1 + k1k2 + k2
2

))
,

c = (k1 − k2)
2(3 + 20α

(
k2

1 − k1k2 + k2
2

))
.

(30)

Note that, due to simplifications made in the solution, it can also be applied to a singular
case when for one of the solitons (say number two), M2 = 0

(
1 + 20αk2

2 = 0
)

which happens
for α = −1 and k2 = 1/(2

√
5). (In the initial form of the solution, the coefficient q12 = 2M2

appears as a multiple of eZ2 in all the places but simplifications result in that the factor 1+20αk2
2

is compensated in some terms.) In this singular case which corresponds to interaction of the
GKK soliton with the sech2 KdV-like soliton, the expression for u can be represented in a
rather simple closed form as follows:

u = k2 − 1

10((2(k2 − 1) + (k2 + 2) cosh ζ1) cosh ζ2 − 3k sinh ζ1 sinh ζ2)2

×(k4 + 11k2 − 12 + (k2 − 4)(cosh 2ζ1 + k2 cosh 2ζ2)

+ 2 cosh ζ1(k
4 − 6k2 + 8 + k2(2 + k2) cosh 2ζ2) − 6k3 sinh ζ1 sinh 2ζ2),

k = 2k1

√
5, ζ1 = k√

5

(
x −

(
k2

5
− k4

25

)
t

)
, ζ2 = 1√

5

(
x − 4

25
t

)
. (31)

An example of the two-soliton solution (30) of equation (9) with α = −1 corresponding
to an overtaking collision of two solitons of the ‘exotic’ shapes (a) and (c) is shown in
figure 2. A head-on collision of two double-hump solitary waves as described by the
solution (30) is illustrated by figure 3. An example of the three-soliton solution of equation (9)
is presented in figure 4. In the context of the comparison of the GKK solitary wave solutions
of equation (9) with solutions of the bidirectional KK equation considered in [13] and [14],
it should be noted again that equation (9) with α = −1 being a unidirectional nonlinear
evolution equation nevertheless provides solutions which represent the head-on collisions
between solitary waves, as well as overtaking ones.

9



J. Phys. A: Math. Theor. 43 (2010) 085208 G I Burde

50

50

x

400

400

t

0.5

0.5

u

Figure 2. Overtaking collision of the solitary waves of the shapes (a) and (c) described by
the two-soliton solution (30) of equation (9) with α = −1. Parameters of the solitons are
Q1 = −1, k1 = 0.1, φ1 = 0 for the first soliton (right, in the front of the picture) and
Q2 = 1, k2 = 0.475, φ2 = 0 for the second soliton (left, in the front of the picture).

40

40

x

100

100

t

0.3

0.3

u

Figure 3. Head-on collision of two double-hump solitons described by the two-soliton solution (30)
of equation (9) with α = −1. Parameters of the solitons are as follows: Q1 = 1, k1 = 0.51, φ1 =
0 for the left-running soliton (right, in the front of the picture) and Q2 = 1, k2 = 0.46, φ2 = 0
for the right-running soliton (left, in the front of the picture).

3.3. Steady-state solutions

The second type of solutions identified by applying the direct method with the Ansatz (22) is
the steady-state solutions of the form

u = U
1 − kx2

(1 + kx2)2
, (32)
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50 50
x

0.5

1

u

Figure 4. Three-soliton solution of equation (9) with α = −1 for the moments t = −5 (thin
solid), t = −0.5 (dashed) and t = 5 (thick solid). Parameters of the solitons (according to (10))
are Q = 1, k = 0.475; Q = 1, k = 0.75 and Q = 1, k = 1 for the left, middle and right ones
respectively at t = −5.

10 5 5 10

0.5

1.0

1.5

2.0

Figure 5. Steady-state solution (32) of the Sawada–Kotera equation (5): U = 60k/β for β = 15
and k = 0.5.

where U and k are constants. These solutions describe steady-state localized patterns. Among
equations of form (16) only one equation, namely the Sawada–Kotera equation (5), provides
such solutions with U = 60k/β. Note that the shape of the localized pattern described
by this solution (figure 5) is qualitatively similar to that of the GKK soliton (25) of type
(a) (figure 1) although the former is expressed by an algebraic function (32) while the latter
is expressed in terms of hyperbolic functions. Thus, the SK equation possesses two types of
solutions describing localized patterns: the sech2 solitons and steady-state solutions of the
form (32). Recall that equation (26), which is one of the two counterparts of (5) among the
KdV–SK equations specified to the same value of β = 15, also possesses solutions of two
types: the sech2 solitary waves and the GKK solitary waves (27) with a velocity not dependent
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on the shape parameter which, in a sense, is equivalent to the property of being steady
state.

Among the equations of type (15) there is a two-parameter family of equations providing
solutions of the form (32) for unique k and specific relations between the equation parameters
as follows

δ = 45α − β

2
, r = 3β − 30α, k = 4

β − 30α
, U = 2k. (33)

The case of β = 30α must be excluded and thus the region (33) in the parameter space does
not overlap with the region (23) of existence of the KdV-like solitary waves.

It is worth noting here that solutions (32) behave like ‘static’ solitons when they interact
with regular solitons (see remarks in section 4). This is the reason why they are considered in
the paper on an equal footing with the common solitary wave solutions.

4. Concluding remarks

In the present paper, new types of the solitary wave solutions of the fifth-order KdV-like
equations have been identified. The generalized Kaup–Kupershmidt solitary waves (25) are
of most interest. They unify the KdV and KK solitons which become particular cases (or
limiting cases as for the solution (10)) of a more general solution. An important finding in this
connection is that equation (9) possesses the GKK multi-soliton solutions which makes it a
good candidate for being integrable in terms of the GKK solitons. It could be of considerable
importance both for asymptotic analysis of the higher order KdV equations and for soliton
theory, in general. Another interesting point is that the KdV–SK equation (26), in addition to the
sech2 solitons with a continuous spectrum of the wave velocity, possesses the GKK solitary
wave solution with a continuous spectrum of the parameter M defining the soliton shape.
Therefore, the solution allows different shapes of solitary waves; in particular, the ‘exotic’
soliton shapes with two minima and one maximum and two maxima and one minimum are
possible. For the GKK solitary wave solutions (10) of equation (9), the shape depends on
the parameters α, k and Q. In particular, the ‘exotic’ shapes arise only in the case of α = −1
which corresponds to different signs of the ‘physical’ parameters q̂ and μ̂ in the original
equation (11). In this case, solutions may describe both left-running and right-running solitary
waves so that the multi-soliton solutions which describe the head-on collisions between
solitary waves, as well as overtaking ones, are possible despite the fact that the equation
is unidirectional.

Regarding the second solution type which describes the steady-state localized structures,
an important point is that they may be considered as (static) solitons. This view is based on the
solutions (obtained using a more complicated variant of the method, to be reported separately)
describing the interaction of those steady-state localized patterns with regular solitons. It
is seen from those solutions that the steady-state structures behave as solitons when they
collide with regular solitons—their shape remains unchanged after the collision, only a phase
(coordinate) shift is observed.

Some remarks on the method are required here. The solution form using the ‘potential’ p
as an independent variable is a proper tool if the calculations are aimed at defining the solitary
wave solutions. An additional advantage of using such variables is that the form of solutions
in the original variables is not prescribed from the beginning and, in general, is not directly
related to the form of the Ansatz. The above examples show that the calculations starting from
the same Ansatz may result in solutions expressed both in terms of hyperbolic functions and
in terms of algebraic functions. Such solutions cannot be obtained by applying the popular
‘tanh’, ‘sinh’ and so on methods.
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Further perspectives are provided first by using other forms of f (p) in the Ansatz (18)
and second by enriching the form of the Ansatz, as follows:

u(x, t) = f (p(x, t), ξ(x, t)); p(x, t) =
∫

u(x, t) dx, ξ = kx − ωt − φ, (34)

where the function f (p, ξ) should be such that u vanished for (at least) two values of the
‘potential’ p in order to get the solitary wave solutions. The above-mentioned solutions
describing the interaction of static ‘algebraic’ solitons with regular ‘hyperbolic’ solitons have
been obtained using the Ansatz (34). Also a version of the method in which p is a dependent
variable and u is an independent variable could provide additional possibilities. In such a
formulation with p = F(u), one has to solve the equation ux = u/F ′(u) instead of (19).

Just one more remark on the method: it may seem that application of the method is limited
to the evolution equations, which can be represented in a conserved form, since an expression
for pt in terms of u and its x-derivatives is used to get a polynomial in p after the substitution
of the solution form (18) (or (34)) into the equation. However, it does not limit the application
of the method—even if pt is expressed as an integral (with respect to x) of a combination of u
and its x-derivatives; this integral may be transformed into the integral with respect to p and
the latter one is easily calculated for specific forms of the Ansatz.
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